Two vibrating tuning forks produce waves given by ${y_1} = 4\sin 500\pi t$ and ${y_2} = 2\sin 506\pi t.$ Number of beats produced per minute is
$360$
$180$
$3$
$60$
Two pipes are each $50\,cm$ in length. One of them is closed at one end while the other is both ends. The speed of sound in air is $340\,ms^{-1}.$ The frequency at which both the pipes can resonate is
A wave travelling along the $x- $ axis is described by the equation $y(x, t) = 0.005\,\,cos(\alpha x\,-\,\beta t).$ If the wavelength and the time period of the wave are $0.08 \,\,m$ and $2.0\,\,s,$ respectively, then $\alpha $ and $\beta $ in appropriate units are
The speed of sound in oxygen $(O_2)$ at a certain temperature is $460\, ms^{-1}$. The speed of sound in helium $(He)$ at the same temperature will be ............. $\mathrm{m/s}$ (assume both gases to be ideal)
The phase difference between two points separated by $0.8 m$ in a wave of frequency $120 Hz$ is ${90^o}$. Then the velocity of wave will be ............ $\mathrm{m/s}$
Two trains $A$ and $B$ initially $120\, km$ apart, start moving towards each other on the same track with a velocity of $60\, km/hr$ each. At the moment of start $A$ blows a whistle, which reflects on $B$ and subsequently reflects from $A$ and so on. Take the velocity of sound waves in air $1200\, km/hr$. The distance travelled by sound waves before the trains crash will be (in $km$)